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Abstract
A new wave confinement effect is predicted in graded crystals with a concave slowness surface
under conditions of growth of the phase velocity with decreasing distance from the waveguide
axis. This finding overturns the common notion about the guiding and ‘antiguiding’ profiles of
wave velocity in inhomogeneous media. The waveguide effect found is elucidated by means of
ray analysis and particular exact wave solutions. The exact solution obtained for localized
flexural waves in thin plates of graded cubic and tetragonal crystals confirms the predicted
effect. Since this solution is substantially different with respect to the existence conditions from
all others yet reported, and it cannot be deduced from the previously known results, the
predicted waves can be classified as a new type of waveguide mode in graded anisotropic
media. Although the concrete calculations are given in the article for acoustic waves, its general
predictions are expected to be valid for waves of various natures, including spin, plasma, and
optical waves.

1. Introduction

Material science is one of the high priority scientific areas at
the present time. Among various new materials, functionally
graded ones attract a great deal of attention as promising for
application in a variety of technical and scientific fields [1].
These spatially inhomogeneous materials are characterized by
a gradual variation in composition and structure over their
volume that allows the production of parts and components
with specified properties. The study of the wave properties of
such materials is important for both fundamental and practical
reasons, in particular, for material characterization and non-
destructive testing. Waveguide phenomena in different
inhomogeneous media have been studied for a long time
by many researchers for waves of various natures, including
seismic, acoustic and optical waves, radio and plasma waves,
spin waves, gravity-capillary waves, and some others (see,
for example [2–12]). For smoothly inhomogeneous isotropic
media, it is now firmly established that the waveguide
localization occurs in regions near the minimum phase
velocity [13]. As an alternative and equivalent formulation
of this ‘waveguide law’, the requirement of a decrease of
the index of refraction with increasing distance from the
waveguide axis is frequently mentioned in the literature [14].
In particular, it is stated in a monograph [15] that ‘a necessary

condition for guiding the optical wave is that the refractive
index of the cladding is lower than that of the core . . .. In
the graded index fiber, the refractive index is maximum on
the axis and decreases towards the cladding region’. Such
guiding media are also called lens-like or focusing ones. On
the other hand, the regions of maximum wave velocity are
known as ‘antiguiding’ [13, 16]. The refraction leads to wave
rays bending and pushing away from these regions, forming
shadow zones where no direct rays from a point source occur.
No exceptions to these ‘waveguide laws’ are known as yet.
However the anisotropy effect on these common ‘waveguide
laws’ in smoothly inhomogeneous media such as crystals
has not been addressed yet. Note that localized states and
excitations in both crystalline and non-crystalline solids are of
importance in the study of various dynamic processes [17, 18].

Among the various anisotropies of material properties
of condensed matter, the simplest is the ellipsoidal one. A
mere change of scale of the ellipsoid axes transforms the
ellipsoidal characteristic surfaces (which are entirely convex)
into spheres. This is a simple and direct way to generalize
the known formulae and solutions of the isotropic case to the
case of media with ellipsoidal anisotropy. Such anisotropy
is typical, for example, for optical waves in homogeneous
dielectric crystals [19], because their anisotropic properties
are determined by the second-rank tensors of dielectric
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permittivity and magnetic susceptibility. Media with local
concavities on the characteristic surfaces have much more
complicated anisotropic wave properties. Local concavities
of the slowness surfaces are common for electromagnetic
waves in plasma [20, 21], spin waves in ferromagnetics [22],
optical waves in photonic crystals [23] and acoustic waves
in anisotropic solids [24], and these concavities can be the
cause of new wave effects. One such effect is predicted and
studied theoretically in the present paper under the combined
conditions of anisotropy and spatial inhomogeneity of material
properties. Namely, it is shown below that a smooth decrease,
rather than the commonly assumed growth of acoustic wave
phase velocity with increasing distance from the waveguide
axis, can lead to waveguide localization in crystals with
locally concave slowness surfaces. It is pertinent to point out
that this velocity profile corresponds to conditions which are
‘antiguiding’ for both isotropic [13, 16] and anisotropic media
with convex slowness surfaces. Thus, the predicted effect is
due to specific anisotropy, and so it is in principle impossible
in isotropic media.

A partial waveguide localization, i.e. localization with
energy leakage, may, in general, occur in the regions of
maximum phase velocity in the media with discontinuities of
wave characteristics, such a high-velocity layer inserted in or
lying on a low-velocity medium [25]. If the impedance ratio
of these two materials is large enough, this produces strong
reflections at the interfaces. Then the waves excited in such
a high-velocity layer travel over long distances with multiple
reflections and relatively low energy loss per reflection at the
interface, resulting in a partial waveguide effect. However,
from the mathematical point of view it is just a pseudo-
localization since the outer wave field of leaky modes radiated
from the waveguide, with rare exception [26], is not localized
in space. This topic is beyond the scope of the present paper
where only true waveguide localization without leakage is
analyzed.

Concerning our interest in the problem under discussion, it
can be mentioned that two of us have recently studied the effect
of a narrow thin liquid layer on the waveguide localization of
surface acoustic waves (SAW) on piezoelectric substrates. The
first attempt to investigate this problem was made ignoring the
substrate anisotropy [27]. A further account of the anisotropy
has shown that it can enhance the SAW localization, and
this enhancement is especially strong in the case when the
curvature of the SAW slowness curve in the vicinity of the
propagation direction tends to zero [28]. However, that
analysis belongs to the case of entirely convex slowness curves,
while the consideration of locally concave slowness curves in
the present paper leads to the prediction of a novel uncommon
waveguide phenomenon.

2. Elliptical and hyperbolic wave models

In general all material properties can vary over the volume of
graded materials. On the other hand, in some multicomponent
anisotropic media the relative variations of the elastic
stiffnesses with component content can be much less than
those of the mass density. This case occurs, for example, in

cubic crystals of Alx Ga1−xAs with a varying content, x , of
Al [29]. Therefore, the account of only the mass density spatial
dependence and ignoring that for stiffnesses might be both a
good approximation and a considerable simplification of the
problem for such media. This simplified model of anisotropic
graded media is used further for analytical studies in the
present paper. A similar model was used in [30] for ray tracing
in anisotropic inhomogeneous medium with a linear velocity
gradient when the elastic properties vary only by a simple scale
factor. As an additional simplification, we assume that the
mass density depends only on the distance from the waveguide
axis, which is considered to be parallel to a symmetry axis of
the graded crystals.

The case of strict elliptical anisotropy is realized for
pure shear acoustic waves propagating in the crystal mirror
plane and polarized perpendicularly to this plane. For waves
polarized along the Z axis and propagating in the XY mirror
plane in crystals, with X being the symmetry axis, and with
constant mass density, the equation of motion has the form

ρüz = Cx
∂2uz

∂x2
+ Cy

∂2uz

∂y2
. (1)

Here uz is the displacement component, Cx = c55 and
Cy = c44 are the elastic stiffnesses, ρ is the mass density.
Equation (1) remains unchanged when ρ is a function of the
transverse coordinate y. If this function is even, it may be
approximated by a parabolic dependence

ρ = ρ0(1 − γ2 y2), (2)

where ρ0 and γ2 are constant. Since the mass density should
obviously be positive, equation (2) can only be used if |y| �
1/

√
γ2 for γ2 > 0. This known defect of the parabolic

approximation [31] can be excluded in another model of graded
media for which ρ and Cy are considered constant while Cx =
Cx0(1 + γ̃2y2), and where Cx0 and γ̃2 are constant.

The hyperbolic anisotropy cannot be exact for acoustic
waves. Nevertheless, it can be used as an approximation of
the local concavity of the slowness curve in the direction of
wave propagation. The equation of motion for this model has
the same general form as equation (1) with the only difference
being the sign of the coefficient Cy , which is negative in the
hyperbolic case. The basis for considering such a case is the
possibility to derive equation (1) for quasi-shear waves in the
paraxial approximation [32], since the effective elastic constant
Cy for these waves becomes negative when a concavity of the
slowness curve appears near the x axis. Further, the two cases
of elliptical and hyperbolic anisotropies, which differ only in
the sign of Cy , are considered as one.

Searching for the solution in the form of harmonic waves
with angular frequency ω, uz = u0(y) exp(ikx x − iωt),
reduces equation (1) to an ordinary differential equation which
looks like the Schrödinger equation for a quantum harmonic
oscillator

∂2uz

∂y2
+ (p − α2 y2)uz = 0, (3)

where p = (k2
0 − k2

x)/A, α2 = k2
0γ2/A, A = Cy/Cx ,

k2
0 = ρ0ω

2/Cx . Under the condition

p = (2n + 1)α, n = 0, 1, 2, . . . , (4)

2



J. Phys.: Condens. Matter 22 (2010) 075401 A V Kozlov et al

equation (3) has the known localized solutions

un
z = un

z0 exp(−ξ 2/2)Hn(ξ) exp(ikn
x x − iωt), (5)

where ξ = y
√
α, kn

x is the propagation constant of
the nth mode defined by equation (4), un

z0 is the mode
amplitude, Hn is a Hermite polynomial of order n, Hn(ξ) =
(−1)n exp(ξ 2)

dn exp(−ξ 2)

dξ n .
It should be noted that the same equation as (3) has been

used in [28] for the analysis of the anisotropy-induced increase
of beam compression of guided Rayleigh waves. However, for
the Rayleigh waves this is only an approximate model equation
rather than an exact one as it is for the shear waves. In addition,
the effect of concavity of the slowness curves, which is the
focus of the present study, has not been considered in the
mentioned paper. An intriguing property of the anisotropic
solution (5) noticed in [28] is the superstrong compression
of the waveguide beams in the limit α → ∞, when the
anisotropy parameter A becomes infinitely small. In this case
the curvature of the slowness surface near the X axis tends
to zero. It is important to stress here that both equation (1)
for a medium with variable mass density and its solution (5)
are exact for pure shear waves. Thus, the conclusion on
waveguide beam compression when the slowness surface
curvature decreases is absolutely reliable and correct for waves
of this type. However, the pure elliptical anisotropy makes it
practically impossible to achieve the limit of zero curvature.
The strongest known compression of the slowness ellipse for
pure shear waves is found in tellurium dioxide crystals in
the plane with normal (110) [33]. But even in this case the
ellipse eccentricity is no more than 3.4. This is illustrated in
figure 1, where subscripts of the slowness projections denote
the corresponding crystallographic directions. Both the real
and imaginary branches of the slowness curve for that case
are presented. These branches are calculated as solutions to
the secular equation in the case when the varying horizontal
slowness projection is real. Note that both the real and
imaginary (or complex) branches of the slowness curves are of
interest for the analysis of various wave phenomena [34–37].
Hereafter, the slowness projections are normalized by their
value corresponding to wave propagation along the horizontal
axis. In this form of representation, the slowness surfaces are
identical to the iso-frequency surfaces in wavenumber space.

Let us now discuss the effect of the slowness concavity
on the solution (5). If the convex slowness model is replaced
by the concave one, the imaginary hyperbolic branch shown
by the dashed line in figure 1 becomes real. For that, it is
necessary to change the signs of Cy and, consequently, of A.
Since, according to the formula for α, the localized modes exist
only if the signs of the coefficients A and γ2 are the same,
γ2 should also change its sign in this case. Thus, in contrast
to the common situation that occurs for the convex slowness,
the guiding velocity profile for the concave slowness should be
inverse (at least, in this simplified hyperbolic model), i.e. the
velocity should decrease rather than grow with increasing
distance from the waveguide axis. This prediction is further
supported by a ray analysis.

Figure 1. Real and imaginary branches of the slowness curve (S) for
pure shear waves, propagating in the (110) plane of tellurium dioxide.
The real branch is given by the full line. The oblique straight dashed
lines are the asymptotics for the hyperbolic imaginary branch given
by the dashed curve. The slowness projections are normalized by the
value corresponding to wave propagation along the horizontal axis.

3. Ray theory

Ray analysis is a simple and illustrative method allowing
a better understanding of wave phenomena and so it could
be useful for the physical explanation of the predicted,
uncommon and paradoxical, at first view, waveguide effect.
Such an approach is used in this section to elucidate the
mechanism of wave localization in anisotropic media with
‘antiguiding’ velocity profiles. Note that the ray constructions
were previously carried out for inhomogeneous media with
elliptic anisotropy and various velocity profiles (see, for
example [9, 10, 30, 38, 39]), but the case of waveguides
with parabolic velocity profile was studied only for isotropic
media [8].

A common ray path corresponding to localized waveguide
modes propagating along the horizontal axis X is shown
in figure 2. The construction of rays for this path at
different distances from the waveguide axis is demonstrated

3
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Figure 2. Typical wave ray path for guided modes. The coordinate
y0 corresponds to the ray turning point, x0 is the ray period. Three
selected rays are depicted: n1 at the waveguide axis, n3 at the turning
point, n2 at an intermediate distance.

in figures 3(a) and (b), in both cases of convex and concave
slowness surfaces. For this Snell’s law is used, according to
which the tangential projections of the refracted wavevectors
and, consequently, of the slownesses are continuous as the
wave rays propagate in inhomogeneous media. It follows,
from the solution presented in section 2, that if A > 0,
the slowness of the waveguide modes is less than the local
horizontal slowness at the waveguide axis. For wavenumbers
this means that kx < k0, where k0 is defined above and can
be interpreted as the propagation constant for wave rays lying
on the waveguide axis and traveling along this axis. The
inequality between kx and k0 in the solution found is reversed
in the concave slowness case when A < 0. These inequalities
prescribe the admissible fixed (according to the Snell’s law)
horizontal projections of the slowness, indicated for selected
localized modes by dashed vertical lines in figures 3(a)
and (b). The crossings of the vertical lines with the slowness
curves, drawn at different distances from the waveguide axis,
determine the corresponding vertical slowness projections. In
turn, the normals n1, n2 and n3 to the curves constructed at
the crossing points in figures 3(a) and (b) define the directions

of the wave rays, like those shown in figure 2. The general
shape of the slowness surface in the particular case under
study is not changed as the rays move from the waveguide
axis, since only the mass density varies, being a simple scale
factor for the slowness. So, its cross-sections, corresponding
to the wave rays shown in figures 3(a) and (b), differ from
each other only in scale rather than form. Figure 3(a)
gives the cross-sections of the convex slowness surface at
different distances from the waveguide axis. From simple
geometrical constructions in this figure, it is obvious that only
the common guiding velocity profile (with a minimum at the
waveguide axis) provides a return of the rays as they move
away from the waveguide axis. On the other hand, similar
constructions for the cross-sections of the concave slowness
surface in figure 3(b) show that the shape of the waveguide
ray path (figure 2) can remain basically unchanged only in the
case of inversion of the common velocity profile. Thus, the
velocity profile required for waveguide mode localization in
the case of concave (hyperbolic) anisotropic slowness surfaces
evidently appears to be inverse to that needed in the convex
slowness case. This simple graphical consideration reveals
the basic reason for the uncommon waveguide effect under
study. The reason is that the wavevector deflection from the
waveguide axis in the concave slowness case produces an
inverse deflection of the energy fluxes and respectively of the
wave rays from the same axis. At the interface of different
media, such a deflection can give rise to the phenomenon of
negative refraction, which is the focus of current studies in
physics [40–42]. So the reason for the effect under study is,
in principle, the same as that for the phenomenon of negative
refraction due to anisotropy.

The qualitative analysis of the wave rays presented is
valid in general for the concave and convex parts of the
slowness surfaces of arbitrary shape. For simple models of

Figure 3. (a) Convex and (b) concave slowness curves (S) at different distances from the waveguide axis. The constructions of rays n1, n2,
and n3, corresponding to those in figure 2, are shown.
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anisotropy this analysis can be strengthened by developing
a quantitative theory, as is done below. To simplify such a
theory, the convex and concave parts of the slowness cross-
sections are approximated locally using elliptic and hyperbolic
curves corresponding to the models considered in the previous
section. For both of them, the secular equation following from
equation (1) is

Cx k2
x + Cyk2

y = ρω2, (6)

where kx and ky are the coordinate projections of the
wavevector, kx = k cos θph, ky = k sin θph, and θph is
the phase velocity angle. In further analysis we adopt the
well-known general scheme of ray construction in anisotropic
media [43, 44] to our particular problem. The wave ray paths
are found using the equation of the tangent to a path

dy

dx
= tan θgr, (7)

where θgr is the ray angle (angle of the group velocity
direction), with θgr = θph + ψ . The angle ψ between the
group and the phase velocities is calculated from the angular
dependence of the wavenumber k(θph) by the well-known
formula

tanψ = −1

k

∂k

∂θph
. (8)

Using the expression k2 = ρω2/(Cx cos2 θph + Cy sin2 θph),
which follows from equation (6), equation (8) is rewritten as

tanψ = (A − 1) tan θph

1 + A tan2 θph
. (9)

Note that the components of the wavevector are related to θph

by the obvious formula

tan θph = ky/kx . (10)

Now the right hand side of equation (7) can be transformed
using equations (9), (10)

tan θgr = tan(θph + ψ) = tan θph + tanψ

1 − tan θph tanψ
= A

ky

kx
. (11)

Further, eliminating ky from equation (11) by the use of
equation (6) and substituting the relation (2) gives

dy

dx
=

√
A

[
k2

0

k2
x

(
1 − γ2y2

) − 1

]
. (12)

Finally, the ray paths are found by integrating equation (12)

y =
√

1 − k2
x/k

2
0

γ2
sin(x/x0 − C), (13)

where x−1
0 =

√
Aγ2

k2
0

k2
x
, and C is a constant of integration, the

value of which defines the position of the ray paths with respect
to the coordinate system. Equation (13) is used in calculating
the ray path shown in figure 2. In the isotropic limit, this
equation coincides with equation (3.9) derived in [8].

The admissible values of the propagation constant kx

involved in equation (13) vary for waveguide modes of
different order n. They are denoted further as kn

x and are found
in the ray theory from the condition of transverse resonance

4
∫ y0

0
ky dy + 2
ϕ = 2πn, (14)

where 
ϕ is the phase shift at the ray turning point y0. This
shift, as it is known, is equal to −π/2 [11], and the value of y0

is found from the condition ky(y0) = 0, which gives

y0 =
√

1

γ2

(
1 − (kn

x )
2

k2
0

)
. (15)

The result of the calculation of kn
x using equations (14) and (15)

is the following

kn
x =

√
k2

0 − (2n + 1)sgn(A)
√

Aγ2k2
0 . (16)

As in the isotropic case [45], the ray solution (16) yields the
same propagation constants as the exact wave solution (4).
Therefore, our previous conclusions, based on elliptic and
hyperbolic wave models, about the effect of anisotropy on the
guiding velocity profile are also valid for this ray analysis.
Thus, the quantitative ray theory, developed in this section,
confirms the above prediction of the velocity profile required
for waveguide localization in both the cases of convex and
concave slowness surfaces. It shows that for the concave
surface the profile should be inverse with respect to the
common waveguide profile. Note the important difference
between waveguide ray paths in media with ‘antiguiding’ and
guiding velocity profiles. In the case of the ‘antiguiding’
profile, the travel time along the waveguide axis is shorter than
for any other ray path, including waveguide ones, and this
relation is quite the opposite to that known for the common
guiding profile [13].

4. Exact particular solution for guided quasi-shear
waves

The analysis presented above is based on a simplified
theoretical model of the concave slowness surface. On the
other hand, the results of this approximate analysis would be
much more convincing if they were supported by an exact
calculation. For this reason, an attempt is made here, and in
the next section, to find particular exact solutions, with the aim
to give a reliable insight into the waveguide mode behavior in
the case of a concave slowness surface. In both sections we
look for the conditions under which the Gaussian profile is an
exact solution for the transverse distribution of the wave field
of the guided modes. In this section we consider the problem
of waveguide localization for quasi-shear bulk acoustic waves
in a graded tetragonal crystal. Let the waves propagate in the
vicinity of the crystallographic axis X in such a crystal. For
simplicity, a two-dimensional (2D) problem of acoustic beam

5
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propagation in the XY plane is analyzed. The two coupled
equations of motion, relevant to the problem, are [24]

ρüx = c11
∂2ux

∂x2
+ c66

∂2ux

∂y2
+ (c12 + c66)

∂2uy

∂x∂y
, (17)

ρü y = c66
∂2uy

∂x2
+ c11

∂2uy

∂y2
+ (c12 + c66)

∂2ux

∂x∂y
, (18)

where c11, c12, c66 are the elastic stiffnesses; ux , uy are
the displacement vector components; and ρ is the variable
mass density defined by equation (2). For cubic crystals,
equations (17) and (18) are not changed, only c66 is replaced
by c44. Note that the stiffness of the crystals is a fourth-rank
tensor. This distorts the shape of the acoustic slowness surface
and can lead to the appearance of local concavities affecting
the waveguide localization.

Searching for the solution to equations (17) and (18) in the
form

uy = uy0 exp(−αy2/2) exp(ikx x − iωt),

ux = ux0kx y exp(−αy2/2) exp(ikx x − iωt)

results in the following 4 relations, obtained by equating to zero
the coefficients of terms with the same power of y,

ρ0ω
2γ2 = c66α

2, (19)

ρ0ω
2U = 3c66αU + c11Uk2

x + i(c12 + c66)α, (20)

ρ0ω
2γ2 = c11α

2 − i(c12 + c66)αUk2
x , (21)

ρ0ω
2 = c11α + c66k2

x − i(c12 + c66)Uk2
x, (22)

where U = ux0/uy0. Equations (19)–(22) are consistent if
considered as a system in 4 unknowns instead of the 3 natural
ones, such as kx , α and U . Let us take the coefficient γ2 as an
additional unknown. Then excluding γ2 from equation (21) by
the use of equation (19) reduces the system to 3 equations, the
solution to which is

k2
x = 2k2

0B

3 − AB
, (23)

α = k2
0B

1 − AB

3 − AB
, (24)

U = i

2

c11 − c66

c12 + c66
(AB − 1), (25)

where k2
0B = ρ0ω

2/c66, AB = c11/c66−(c12+c66)
2/[c66(c11−

c66)] is the anisotropy parameter for quasi-shear bulk waves.
Similarly to the parameter A = Cy/Cx defined above, AB

has the meaning of the ratio of the effective elastic constants
involved in a paraxial wave equation [32] and it determines
the shape of the slowness curve near the X axis. For single-
component crystals AB has a wide range of discrete values.
On the other hand, for multicomponent crystals there is a
possibility to control and to change continuously the value
of this parameter, and respectively the slowness surface shape
with a smooth transition from local concavity to convexity, by
varying the concentration of one of the components. In the
isotropic case when AB = 1, the localization of the solution

Figure 4. Transverse profiles of local wave velocity v (dashed line)
and of wave field u = uy (full line) for a quasi-shear waveguide
mode in an aluminum-type bulk crystal. The curves are normalized
by the peak values v0 and u0.

disappears, i.e. α = 0, and the obtained solution is transformed
into non-localized plane pure shear waves. As follows from
equations (23) and (24), the localized solution exists in the
range AB < 1, including negative AB . This range of values
admits cases of both convex and concave slowness curves. The
curve is convex when 0 � AB � 1. It becomes locally concave
if AB < 0 and it is locally straight at AB = 0. In the last case
kx(AB = 0) = k0B

√
2/3 �= k0B , i.e. the point corresponding to

the propagation constant of quasi-shear waveguide mode does
not lie on the flat part of the slowness curve, in contrast to
the solution of the simplified wave models, equation (16). For
this reason, the singular compression of the waveguide beams
found for the elliptical and hyperbolic anisotropy models is
eliminated in this exact solution: α(AB = 0) = k2

0B/3, i.e. α is
finite at AB = 0. In addition, as is evident from equation (19),
the obtained solution describes the waveguide localization in a
medium with a common velocity profile, for which γ2 > 0 in
both the cases of convex and concave slowness. An example
of the solution is given in figure 4, where the profiles of local
wave velocity v (v/v0 = 1/

√
1 − γ2 y2) and of waveguide

mode field u (u = uy) are shown in an inhomogeneous bulk
medium of aluminum-crystal type (AB ≈ 0.35). The slowness
curve near the waveguide axis is convex in this example. But
even when it becomes concave, the velocity profile required
for waveguide localization in this solution, according to our
analysis, is not changed and it is the same as shown in figure 4.
Thus, the above hypothesis about the existence of a localized
solution under ‘antiguiding’ conditions is not confirmed in this
particular case.

5. Exact particular solution for guided flexural waves

In this section we consider localized flexural wave propagation
in inhomogeneous thin crystal plates with the aim to find an
exact particular analytical solution to this problem. Note that
the classical 2D thin plate equation is asymptotically exact as
the plate thickness tends to zero. The important point is that
this equation is obtained from the 3D equations of elasticity
theory by integrating them only over the plate thickness
h [46]. Therefore, a gradual variance of the mass density in
the lateral direction has no effect on this derivation. Thus,

6
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Figure 5. Real and complex branches of the slowness curves (S) for flexural waves in crystal plates of (a) lithium and (b) tellurium dioxide.
The real branches are given by full lines and the complex branches by dashed lines.

the equation of thin plates with spatially uniform material
parameters is applicable also to the case of thin samples with
lateral inhomogeneity in the mass density. For tetragonal
crystals of basal-plane cut it reduces to the form [46]

∂4w

∂x4
+ AF

∂4w

∂x2∂y2
+ ∂4w

∂y4
+ Bρẅ = 0, (26)

where AF = 2(c12 + 2c66 − c2
13/c33)/(c11 − c2

13/c33)

is the anisotropy parameter for flexural waves, B =
12/[h2(c11 − c2

13/c33)]; c13, c33 are the elastic stiffnesses, and
w is the flexural displacement of the plate. Equation (26)
is also valid for cubic crystals if the additional relations are
fulfilled: c33 = c11, c13 = c12, c66 = c44. Rotation of
the coordinate axes through angle of 45◦ about the Z axis
has no effect on the form of equation (26), changing only the
coefficients AF and B . In the rotated coordinates they are

AF(45◦) = (3c11 − c12 − 2c66 − 2c2
13/c33)/(c11 − c2

13/c33),

B(45◦) = 12/[h2(c11 − c2
13/c33)].

For plane harmonic waves of the form w ∼ exp(ikx x + iky y −
iωt), equation (26) with constant ρ yields the following secular
relation

F(kx , ky) ≡ k4
x + AFk2

x k2
y + k4

y − ρω2 B = 0. (27)

The transition from the convex to concave slowness surface
occurs in the case when all the roots ky of equation ∂kx/∂ky =
0 correspond to the single value of k2

x . Using an additional
formula ∂kx/∂ky = ∂F/∂ky(∂F/∂kx)

−1, one obtains

∂F

∂ky
= 2ky(AFk2

x + 2k2
y) = 0. (28)

According to equation (27), the roots ky of equation (28)
correspond to the same value of k2

x only in the case when

AF = 0, then all these roots are equal to zero. In this case
the slowness curve for the flexural waves in the plate plane
is convex as a whole but its curvature on the X axis is equal
to zero, i.e. the curve is locally straight. The slowness curve
becomes concave in the X axis direction if the maxima of the
function kx(ky) exist at ky �= 0. This is fulfilled, according
to equations (27) and (28), when AF < 0. In the particular
case of cubic crystals the inequality AF < 0 gives the two
conditions of the slowness concavity derived previously by
Every and Maznev [47] for flexural waves propagating in
the vicinity of the (100) and (110) directions. Such local
concavities are known to exist in the Z -cut crystal plates of
cubic lithium and tetragonal tellurium dioxide near the (110)
propagation direction [47]. Note that AF(45◦) < 0 for both
of these crystals: for lithium AF(45◦) = −2.25 and for
tellurium dioxide AF(45◦) = −0.27. The corresponding
slowness curves are depicted in figures 5(a) and (b) in rotated
coordinates through angle of 45◦ about the Z axis. In
addition to the real branches of the slowness, the complex
and imaginary branches are shown. These additional branches
are also of interest, since they carry information about the
evanescent wave field distribution beyond the turning points
of the wave rays. Note that similar concavities in slowness
curves, but with strong frequency dependence, are also known
for flexural waves in phononic crystal plates [48].

We show now that the waveguide Gaussian beam can be
an exact solution to the flexural wave equation in the case of an
‘antiguiding’ velocity profile. Let the flexural waves propagate
in the vicinity of the X axis in the plate and its mass density ρ
depend on the lateral coordinate y as

ρ(y) = ρ0(1 − γ4 y4), (29)

where ρ0 and γ4 are constant. Note that this profile differs
from the one given by equation (2) and used in the previous
sections. In the case of a mass load on one side of the plate with
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a layer with mass density ρl and thickness hl, ρ(y) is replaced
by the sum ρ + ρlhl/h [49]. This means that the transverse
velocity profile needed for the waveguide trapping of flexural
waves can be realized not only by variations of the crystal
mass density but also by variations of the layer thickness,
hl = hl(y). The last possibility might provide a simpler
experimental implementation of a plate with a prescribed
profile of the flexural wave velocity. In phononic and photonic
crystals, the local wave velocity may be controlled also by a
gradual variation of the structural elements [50].

The solution to equation (26) is searched for as w =
w0 exp(−αy2/2) exp(ikx x − iωt). This gives the following 3
relations, obtained by equating to zero the coefficients of terms
with the same powers of y,

k4
x + 3α2 + AFαk2

x − k4
0F = 0, (30)

k2
x = −6α/AF, (31)

α4 + Bρ0ω
2γ4 = 0, (32)

where k4
0F = Bρ0ω

2. The system of 3 equations (30)–(32) is
consistent if it defines 3 unknowns. Let us take kx , α and γ4 as
these unknowns. It means that a particular mass density profile
is considered in this case with value of γ4 which is not initially
fixed, but is determined instead by the other parameters of the
problem (including the coefficient AF). The coefficient γ4 is
involved only in equation (32), which is used to find its value. It
is of prime importance for confirmation of the prediction of the
present study that the sign of γ4, as follows from equation (32),
happens to be negative. This sign corresponds to a mass density
increase and a respective decrease in the velocity when moving
from the waveguide axis, i.e. to the velocity profile which is
commonly assumed to be ‘antiguiding’. Equation (31) shows
that the localized solution in search exists only if AF < 0, i.e. in
the concave slowness case. Excluding kx from equation (30) by
the use of equation (31), one obtains

α2 = k4
0F

3(12/A2
F − 1)

. (33)

Substitution of equation (33) into equation (31) gives

k2
x = k2

0F√
1 − A2

F/12
. (34)

It follows from equation (33) that: (i) the coefficient α is
real if the admissible values of AF are restricted by the
inequality |AF| <

√
12 and (ii) α ≈ |AF|(k2

0F/6) as AF

tends to zero. Therefore, the absolute beam compression rate,
which is proportional to α, decreases in this limiting case.
However, the profile of the mass density also changes with
decreasing |AF| so that the density gradient tends to zero.
In order to understand better the effect of anisotropy on this
solution it is reasonable to consider the relative compression
of the waveguide beam along a rescaled lateral coordinate
ỹ = y 4

√|γ4|. In the rescaled coordinates the mass density
profile remains fixed and does not depend on anisotropy, and
the lateral dependence of the Gaussian mode field is written
as w ∼ exp(−α̃ ỹ2/2), where α̃ = α/

√|γ4| is the relative

compression coefficient of the waveguide beam. As follows
from equation (32), α̃ ∼ 1/α, i.e. α̃ ∼ 1/|AF| when |AF| →
0. Hence, the relative compression of the waveguide beam
singularly increases, contrary to the absolute compression that
decreases, as the curvature of the slowness concavity tends to
zero. Such a conclusion is in full agreement with the results
when considering the simplified elliptic and hyperbolic models
in sections 2 and 3.

An additional analysis of the waveguide beam angular
spectrum could provide a better insight into the effect of
anisotropy on the wave field. First note that, according to
equation (34), kx → k0F as |AF| → 0, that is, the propagation
constant of the waveguide mode approaches the quasi-straight
part of the slowness curve in this case. Then the absolute
value of the Gaussian beam width, characterized by the factor
α−1/2 ∼ |AF|−1/2, increases, which means that the width of
the beam angular spectrum diminishes. On the other hand, the
narrower the spectrum is, the less the slowness curve features
(for directions far from the waveguide axis) affect the beam
parameters. Therefore, the quasi-straight part of the slowness
curve plays the dominant role in defining the properties of
the solution in the limit |AF| → 0. This explains the
singular increase of the relative compression of the waveguide
beam discussed above. Note that although the plane-wave
expansion of wave beams is not rigorous in inhomogeneous
media, approximately one can apply it here since the medium
inhomogeneity (defined by the coefficient γ4) tends to zero in
the limiting case under consideration.

The results of this analysis are confirmed by numerical
calculations of local velocity and wave field profiles, shown in
figure 6, for crystals of lithium and tellurium dioxide. Note that
in this figure, in contrast to figure 4, the velocity v is given by
the other formula (here v/v0 = 1/

√
1 − γ4y4). The slowness

curvature of tellurium dioxide near the selected waveguide axis
is less than that of lithium (see figure 5), which leads, as
one can see both from figure 6 and the presented analysis, to
the decrease of the transverse width of the waveguide mode
corresponding to this crystal. The velocity profiles shown in
figures 4 and 6 give an illustrative graphical representation of
the difference between the known and new (established by us)
guiding conditions.

Thus, the exact analytic solution for flexural waves,
obtained in this section, describes the localized waveguide
modes in the case of an ‘antiguiding’ velocity profile in
anisotropic graded media with local slowness concavities. In
fact, this ‘antiguiding’ profile becomes guiding, because in the
studied case it produces the waveguide effect. For the obtained
solution, the relative width of the waveguide beam decreases
singularly as the local curvature of the slowness curve tends
to zero. These two properties of the exact solution found
confirm the predictions of the simplified models elaborated in
sections 2 and 3.

6. Comparison of exact solutions

To understand the opposite properties and the predictions of
the exact solutions obtained it is reasonable to perform their
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Figure 6. Transverse profiles of local wave velocity v (dashed line)
and wave field w (full lines) for flexural waveguide modes in crystal
plates of lithium and tellurium dioxide. The dimensionless horizontal
coordinate ỹ = y 4

√|γ4| is selected in such a way that the velocity
profiles for both crystals in this representation are the same.

comparative analysis using the slowness surfaces to define the
corresponding orientations of the wave rays.

As already noted, the exact solution for localized quasi-
shear bulk waves exists in both the cases of convex and concave
slowness surfaces. In the case of convexity the common
waveguiding velocity profile is required for the existence of
this solution, in agreement with the analysis presented in
sections 2 and 3. This point is clearly illustrated by the ray
constructions in figure 3(a). When the concavity appears,
the propagation constant of the quasi-shear waveguide mode
kx does not change its previous position with respect to the
value of k0B , which is the propagation constant for wave
rays lying on the waveguide axis and traveling along this
axis. The recognition of this fact is crucial for understanding
the properties of the solution found. Indeed, according to
equation (23), kx is always less than k0B . The same relationship
is also valid for the slownesses. As a result, the vertical
line corresponding to the slowness of the waveguide modes
is shifted leftward with respect to the local concavity of
the slowness curve. This is illustrated in figure 7, where
the slowness curves are given at different distances from
the waveguide axis in a model cubic crystal. The curves
are calculated using the secular equation that follows from
equations (17) and (18), with stiffness ratios c11/c44 = 0.5 and
c12/c44 = 0.49, for which the concavity is quite pronounced.
Due to the mentioned shift of the slowness, the rays related
to the concave part of the slowness surface on the waveguide
axis are excluded from the solution, as discussed below. For
the common velocity profile, the slowness surface gradually
shrinks with increasing distance from the waveguide axis,
causing a continuous bending of wave rays from n1 to n2, and
from n2 to n3, demonstrated in figure 7. Beginning from some
distance, the dashed vertical line in this figure intersects the
concavity, giving rise to rays on the concave part similar to the
ray n4, in addition to rays like n2 on the convex part. Since
it is unlikely that the solution exhibits a jump-like transition
from rays of n2 type to rays of n4 type, it is reasonable to
expect that the found wave solution does not incorporate the
rays corresponding to the concave part of the slowness. This

Figure 7. Slowness (S) cross-section evolution for the localized
quasi-shear modes at different distances from the waveguide axis.
The construction of rays n1, n2, and n3, corresponding to the ray path
for guided modes shown in figure 2, is given. The relevance of the n4

type rays on the concave part of the slowness curve to the waveguide
solution found is discussed in the text.

explains why the concavity does not change the type of velocity
profile for the quasi-shear wave solution, and why it is the same
as the well-known guiding profile in the isotropic and convex
anisotropic cases.

Nevertheless, this explanation does not mean that the
existence of a localized solution is prohibited in the general
case for an ‘antiguiding’ velocity profile. Such an unusual
opportunity, as found in section 5, can indeed be real for
flexural waves in crystal plates. In this case it is important that,
contrary to the localized quasi-shear waves, the propagation
constant kx for the localized flexural waves, according to
equation (34), is always more than the propagation constant
k0F for wave rays lying on the waveguide axis and traveling
along this axis. For this reason, the rays related to the concave
part of the slowness curve are now included into the solution.
The same situation occurs in the hyperbolic model, for which
the required velocity profile is always inverse with respect to
the common waveguiding profile.

The discussed solutions also differ essentially from each
other in their behavior in the limit when the slowness surface
becomes locally flat. For quasi-shear waves, in contrast
to the elliptic and hyperbolic models, the waveguide beam
compression does not occur in this limit. On the other hand,
for flexural waves such compression takes place with respect
to the relative beam width. This difference is evidently related
to the fact that for flexural waves the slowness curve point
corresponding to the waveguide mode appears on the flat part
of the curve and for quasi-shear waves this point lies on the
convex part. Thus, the apparent contradictions and different
properties of the exact particular solutions found for localized
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bulk and flexural waves are quite explainable and they are
the implications of the variety of the wave phenomena in the
studied systems.

In order to understand the cause of disagreement between
the exact particular solution of equations (17) and (18) for
quasi-shear waves and that of equation (1) for the hyperbolic
wave model, it is reasonable to verify whether the first of
these two solutions satisfies the condition of the paraxial
approximation |∂ui/∂y| 
 |∂ui/∂x |, which makes it possible
to derive equation (1) from equations (17) and (18) [32]. For
the Gaussian profile the mentioned condition reduces to the
inequality

αy 
 kx . (35)

Although (35) is evidently violated when y becomes large
enough, for such well confined wave beams as the Gaussian
one it is sufficient to require that this inequality holds at least
within the beam boundaries at yw = 2/

√
α. Substituting

yw and the relations (23), (24) for k2
x and α into (35) gives

AB � 1/2. Such a condition occurs only in the case of
a convex slowness surface, but according to the solution (4)
it corresponds to the common velocity profile. Therefore,
the origin of disagreement between the exact solutions to
equations (17), (18) and (1) obviously lies in the failure of the
paraxial approximation.

It is worth noting, at the end of this comparison, that while
for the elliptic and hyperbolic models the mass density profiles
differ only in the sign of the coefficient γ2, for quasi-shear
and flexural waves these profiles are also distinguished from
each other by the functional dependencies on y. In addition,
the uncommon velocity profile found for flexural waves has no
such essential physical restriction on the waveguide area width
as does that of the common parabolic profile, as mentioned in
section 2.

7. Conclusions

This paper contains prediction of a new, previously unknown
physical effect of waveguide localization under conditions
which are commonly considered as ‘antiguiding’. This
unexpected and paradoxical, at first view, effect may occur if
the slowness surface of anisotropic wave medium is concave
in the direction of wave propagation. Such conditions may
be realized for acoustic waves in graded materials, which are
attracting a great deal of attention at the present time.

The results obtained can be summarized as follows:

(1) The study of pure shear wave propagation in graded
crystals predicts the anisotropy-induced enhancement of
the transverse compression of the waveguide modes
as the slowness surface curvature decreases in the
case of a common guiding velocity profile (where the
phase velocity grows with increasing distance from the
waveguide axis). This result is absolutely reliable
and correct since both the equation of motion and its
solution for pure shear waves characterized by the elliptic
anisotropy are exact.

(2) The hyperbolic anisotropy model predicts the existence
of localized waveguide modes under ‘antiguiding’
conditions, i.e. when the phase velocity drops rather
than grows with increasing distance from the waveguide
axis. This model also predicts the strong transverse
compression of the waveguide beam as the slowness
surface curvature tends to zero.

(3) Both the qualitative and quantitative ray considerations
are consistent with the predictions of the elliptic and
hyperbolic anisotropy models. The ray formula for the
propagation constants of the waveguide modes coincides
completely with the corresponding formula of the exact
wave solution.

(4) The exact particular solution obtained for localized quasi-
shear bulk waves in cubic and tetragonal crystals does
not confirm the predictions of the simplified elliptic
and hyperbolic anisotropy models, and at first view it
contradicts them. However, a more detailed analysis
explains this apparent contradiction.

(5) The exact particular solution obtained for flexural waves
in thin crystal plates confirms the prediction of the
simplified hyperbolic model. It describes the existence of
laterally localized waves under ‘antiguiding’ conditions,
that is, when the phase velocity decreases away from the
waveguide axis.

Thus, the three diverse approaches to studying the
predicted effect, such as using (i) exact general solutions
to simplified wave models, (ii) ray analysis, and (iii) exact
particular solutions to the more complicated wave models,
make the prediction clear, convincing and reliable. It is worth
noting that the exact solution found for flexural waves is
substantially different, with respect to the existence conditions,
from all others yet reported and it cannot be deduced from
the previously known results. Therefore, the predicted waves
can be classified as a new type of waveguide mode in
graded anisotropic media with an ‘antiguiding’ velocity profile.
The present study does not completely deny the previous
general notion about waveguide localization conditions in
inhomogeneous media, but it shows its limited applicability
in media with special anisotropic properties. Although the
above consideration concerns acoustic waves, one can expect
the occurrence of the predicted effect for waves of different
natures including, in particular, plasma, spin and optical waves,
under conditions such that the medium anisotropy produces
slowness surface concavities. The results obtained could also
offer a new point of view in the development of the theory of
streamer breakdown caused by phonon streams in crystals [51].
Further generalizations of the obtained results may be related
to the study of similar effects in self-focusing wave beams in
nonlinear media.
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